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SUMMARY

| The determination of "optimum" solutions to
| systems Of linear inequalities has assumed
| incressing importance as a tool for mathe—
' matical analysis of certain problems in

| eccnomics, loglsticas, and the theory of

‘ games. ‘his paper develops a theory for
|

avoiding assumptions regarding rank of
underlying matrices which has import in
applications where little or nothing is
known about the rank of some linear ine-
quality system requiring solution.




THE QENERALIZED SIMPLEX MLTHOD FOR MINIMIZING A LINEAR
FORM UNDER LINEAR INEQUALITY RESTRAINTS

by

George B, Dantzig, Alex Orden,
Philip Wolfe+

Background ang Summa ry

matical analysis of certain problems in economics, 1ogiltiol, and the
theory of games [1],[5]). The solution of laggo'lgstogg 1s beocoming mo.e
feasible with the advent of high-speed digital computers; howcver,

88 in the related problem of inversion of large matrices, there are
difficulties which remain to be resolved connected with rank, This
paper develops a theory for avolding assumptions regarding rank of
undcrlying matrices whigh has import in applications where little or
nothing i1g known about the rank of the linear inequ;lity System under
consideration,

The simplex procedure ig ga finite iterative method which
deals with problems involving 1inear inequalities in a manner closely
analogous to the 8olution of linear equations op matrix inversion by
Gaussian elimination, Like the latter it is useful in proving funda-
mental theorems on linear alzebraio systems. For éxample, one form
of the fundamental duality theorem associated with linear inequalities

is easily shown as g direct consequence of jolving the main

'Alox Orden 1is affiliated with the Burroughs corporation,
Research Division, Phillg Wo
at the University of Callforn

}fe s a graduate student
a.
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the duality theorem [8], (10], [11],

Minmax

tational method (

demonstrated by Rolert Dorfman,

yYields optimal sty tegies for both players and the

The term "simpilex"

version in whioh (1like in game theory) the

negative and summed

theorem for zero—sum two—peraon games (14

(12] 1eads directly to the

] and to a COMpU~
inted out informally by Herman Rubin and

Ref. [1a]) which 8imultaneously

value of the

evolved from an early geometrical

variables were non-
to unity. In that formulation a class of

"solutiona" was oozfidcrod whioh lay in a simplex.

The gene
by the first of the
[1b] and then disous

Linear Inequalities

indicated, is to remove

rank of the matrix o
which a condition ca

Under dege:
solution to remain ur
the originai simplex
can be repeated, to b
Alan Hoffwan [14] and
that 1t was possible
With the value of the
than the desired mint
to note that while mo

11zed method given here was outlined earlier
authors (Dentzig) in a short footnote, Ref.
sed somewhat more fully at the Symposium of
in 1951. 1Its purpose, as we have already

the restrictive assumptions regarding the

f coefficients and constant elements without
lled "Cageneracy" can ocour,
leracy it 1s possible for the value of the

ichanged from one 1teration to the next using '

method. This causes the proof that no basis

reak down. In fact, for certain examples g

ore of the authors (Hblro) have shown 4

to repeat the basisa and thus cycle forever

8olution remaining unchanged and greater

mum. On the other hand, 1t 1a interesting

8t problems that ar!se from practical sources
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(in the author's experience) have been degenerate, none have ever
dycled, [9].

The essential scheme for &volding the assumptions on rank
is to replace the orizinal problem'by a "p?rturbltion" that satisfies
these conditions, That such perturbations exist is, of course,
1ntu1tbvely evidenl but the question remained to show now to do it
in a simple way. For the special case of the transportation problem
8 simple method of producing a perturbation is found in Ref. [hé].
The second of the suthors nas considered several types of perturba—
tions for the general case. A. Charnes has extenaively investigated
this approach and his writing represents the best available published
material in this regard, Ref. [f], (3. 0¥.

It was noticed early in the develop: ant of these methods
that the 1imit concept in which a met of perturbations tends in the
limit to one of the'aolutiona to the original problem was not essen~
tial to the proor,. Accordingly, the third author (WOIre) considered
8 purely algebraic approach which imbeds the original problem as a

component of & generalized matrix problem and replaces the original

non-negative real variables by lexicographically ordered vectors.

Because this approach gZives a simple presentatlion of he theory,

we adopt it here.




»

___.‘-ﬂ
e E—— - - — c———— —— -

¢ . i

. - >

SECTION 1
THE QFNERALIZED SIMPLEX METHOD

As 13 wel) known, a system of linear

inequalities by
trivial substitution

and augmentation of the variables can pe
replaced by an equivalent 8ystem of linear equations in non-
negative variables; hence, with

consider the basic problem in th

10 loss of generality, we shall

paper.

-£~component

In the original system the real variables

are hon-negative; in the generalized system we shal) Mmean by‘a

vector variable ¥ > 0 (in the lexicographic sense) that it has

B

ihon—zero components, irst of which 1s positive ang by X > ¥y

It 18 easy to see that the fin
the vector variables of the

that x-y > o. St components of

generallized system satisfy a linear

8yitem in non—negative varisbles in which the constant terms are

t components of the constant vectors.

Let P = [?o, Py, -, P&] be & given matrix whose sth

PJ, 18 a vector of (m+1) componenta.
matrix of rank me1

The generalized mu

satisfying

column, Let M be @ fixed

. n
(1) PX = g PX, « M
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where Xy (the §*7 row of X) 18 & row vectop of £ —<components satisfy.-
ing the conditions, in the lexicographic sense,

(2) EJZO (J.ll 2, ftey n)
(3) Xy = Max .

Any set X of "variables" ib; Ei, Xop oo, ih) satisfying
(1) and (2) 1n the above lexicographic Sense will be referred to as
a "feasible solution” (or more 8imply as a "solution") —~— a8 term
derived from prnétical applications in which such a 80lution repre-—
sents a Situation which is phyuically realizable but not necessarily
optimal. The first variable, ib, which will pe called the "valye"
of the 8olution, 1s to pe maximized; 1t 1s not constrained like the ‘
Sthers to pe nNon-negative. 1Ip certain applica;ions (as 1n Section
I1) 1t may happan that some of the other variables also are not
restricted to pe non-negative, This leads to a slight variation
in the method (see the discussion following 'Meorem V).

Among the class of feasible 8olutions, the Ssimplex method
is particularly concerned with those called "bagid" These have
the properties whiagnh we mention in Passing (1) that, whenever any
8olution exists a basic solution algso exists, (Theorem VIII) and
(2) that Whenever a maximizing solution exists and ia unique it
is a basie solution, and whenever a maximizing solution is not
unique there is a basic solution that has the same maximizing value,

(Theorem VI). A basic 8olution 18 one in which only m+) variahles

(including Xy) are considered in (1), the remainder being set equal )
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to zero: 1.e., 1t 13 of the form

m
(4) BV = Povb + 151 PJIVl - M, (Vl 20, 3, #0)
where B = [?o, PJl, v, PJ:] 18 8n (m+l) square matrix and V 1s a
m

matrix of m + 1 rows and £ ~columns whose 1th

row 1s denoted by
Vis (1 =0, 1, «v., m).

It 1s clear from (4) that since M 18 of rank (m+l) so ape

B and V. From this 1t readily follows that the (m+l) columns of B

constitute a bagis in the space of vectors P

T and the solution Vv is
uniquely determined.

Moreover, since the rank of Vis (m+l),

none |
of the (m+l) rows of v can vaniah;

l.e., it 18 not posaible that
Vy = 0. Thus in 2 basic solution all variab

adoid bk X v

lés assoolated with the
veators in the basis (except possibly V.) ane

-d
G i Y

ive; a&ii '

&

others are zero. The condition in (4) can now

to strict inequality

o

¢ strengthened

(5)

v, 0 (L w1, ooy m)
Let Bi denote the 1th row of B inverse
o — ! 1 ] ]
(6) B i 5, [Po: PJl‘ PJ:_)' *tty Pij d - [..‘30; ‘31: tey, t-sm]

where primed letters stand for tranaposan,




N

R s s g . Ty, L e s c—— —co— - 0 e e ‘_.ﬁ
0

RM-1264
heb=554
-7— \

Theorem I: A necessary and sufficient condition that a

basic solution be a maximizing solution is

(7) ﬁopd 0 (J -1, 2k oy n) .

v

Theorem II: If s basic solution is optimal, then any other

solution (basic or not) with the property that EJ = O whenever

(BOPJ) » O 18 8also optimal; any solution with EJ > 0 for some

(BgP4) » 0O 18 not optimel.
0y =2

Proofs: Let ifrepreaent any solution to (1) and V a basic
solution with basis B; then multiplying both (1) and (4) through by
Bo and equating, one obtains, after noting from (6) that BoPo =1
and uo Ji = 0,

n 1 - —-—
Xg + f \porJ)xJ = Vo ;

o~
(%]

whence, assuming BOPJ > 0, then Eb < Vb (which establishes the
sufficiency of Theorem 1); moreover the condition YJ = 0 whenever

BOPJ >0 (J ¥0), tmplies the sumuation term of (8) vanishes and

Io o Vb; whereas denial of this condition implies the summation

term is positive (establishing Theorem II if Theorean I 18 true).
In order to establish the necessity of (7) for Theorem 1,
let Y be a column vector which expresses a vector P 8s a linear

combination of the vectors in the basis:
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= | o
P, = B(B™p ) a BY, = 3 p P. =P

where it igs evident from (6) that, by definition,

(10) yia - Bips

(1 =0,1, ..., m) .

Oonsider g class of 50lutiopns which may be formed from
(4) and (9) of the form

(11) B[V - Y 6]+ P&« M
or more explicitly

- m - -
(12) POLVO = ¥0s0] + 1f1P41[v1 ~¥,,6] + PO wM,

It is clear that since Vk > 0 for i 2 1 has been established
earlier, (5), a class of sclutions with § > 0 (1.e. with &
strictly ggaitg!g) always exiate =.:-n that the variables asso—
clated with P, and P, 1p (12) are non—negative,

hence admissiple
88 a solution to (1). <0, then the values of these solutiong

(13) o = Yos® > ¥,

For a given increase in § the greatest increase in the value

direction of itrepes

of

the solution (i.e, L ascent) is obtained by

choosing s = J such that

(1) pep, - MR (Bepy) < ¢

This castablishes Theorem I11 (below) which is cle

/

arly only s

restatement of the neceasity dr condition (7) or Theorem 1.

are
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Theorem III: There exists a cless of solutions with valuea

Eb p Vb, if for some j = 8

Theorem IV: There exists a class of solutions with no upper

1 bound for values ib 1L for some s , .VOS <0 &andy,, <0 forailil.

Theorem V: There exists 8 new basic solution with value

| Xy > Vb ,» (obtained by introducing P, into the basis and dropping

| 8 unique PJr), if for some s , Yog < O and for some i, Yig > O .

From (12) 1if Yyg S O for all 1, then © can be arbitrarily

large (i1.e., 1ts first component can tend to + co' and the coeffi~

cients of PJ will remain non-negative. The vaiue of these solu—
i

tions (13) will also be arbitrarily large providing y,. < 0
' (establishingz Theorem IV). 1In the event that some Yig 2 0,

the maximum value of © becomes

(16)  Max @ = (L/y,, )V, = Min o)V 2 0, (v20, 1 4 0)
Yis

where the minimum of the vectors (taken in the lexicographic sense)

occurs for a unique 1 = r (since the rank of V is m+l » NO two rows
of V can be proportional, whereas the assumption of non-uniqueness
in (16) would imply two rows of V to be 5o — 8 contradiction).
setting 5 = Max © in (12) ylelds a new basic solution since the

coefficlent of PJ vanishes. 'hus a new basis has been formed
r
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conslsting-of [p,, p, ,
0 Jl

and P8 is put in instead
The next secti
8implex procedure in whi
on all variables (J =1,
fication of procedure:
required, both PJ and -
Second, 1if PJ is in the
required, then this term
corresponding 1 should n

RM-1264
Yus55)
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oon' P » "0' P J Nh.I‘Q P i. Or".itt.d
3 Im Ip

(Theorem v),
on considers an application of the generalized
ch the restriction EJ 2 0 13 not imposed

2y **+, n). This leads to a slight modi—

PJ should be considered as columns of P;
basis and the restriction Vl > 0 18 not
cannot impose a bound on §; hence the

e omitted from (16) 1n forming the minimum,

Starting with any basis B = B(k), one can determine a new

basis B(k+1) by firat determining the vector p_ to introduce into

bo e

3

tie basis by (14). 1 there exists no BoPy < 0, then by Theorenm ,

the solution is optimal and B(k) i1s the final basis. If a Pu exists,

then one forms Yig = (ﬁiPu) and determines the vector PJ to drop

from the basis by (16) Providing there are Yig > 0. If there

exist no Yig ° O, then, by Theorem 1V, a clasg of solutions is

Obtained from (12) with no upper bound for Vb for arbitrary

®>0. Ir PJ can be de

termined, then a new basis B(k+1) is

r
formed dropping PJ and replacing it by Pyi by (13) the value,

8ince @ 2> 0 18 chosen by

r
Vor of this 8olution ig strictly greater fop B(k+1) than for B(k)

(16). 1Thus one may proceed lteratively

starting witnh the assumed initial basgig and forming k = 0,1, 2, ...

until the process stops

because (a) an Optimal solution hag been
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obtained or (b) because & class of solutions with no finite upper
bound has been Obtained.

The number of different bases is finite, not exceeding the

number of combinations of n things taken m at a time; associated

with each basis B is a unique basic solution V = BIM — hence the

number of distinct basic solutions is rinite;,rinally, no basis

can be repeated by the iterative procedure because contrariwise

this would imply a repetition of the value Vv whereas by (13)
0

the values for Successive basic solutions are stricgil monotonically

rations ig finite.

increasing — hence the number of ite

The k + 18¢

iterate is closely related to the Kth by

‘ansformations that constitute the computational algorithm (6], [7]
based on the method: thus for 1 = 0, 1, *cm o, (L o),

simple t:

:‘;k*‘l K . A o . —k+'1 =k . :
k+1 k k \ K+1 :
A71)  pf*t . gy [PHce ; B = ).BK ;

where the 8uperscripts

k +1 ard k are introduced here to diatingulsh

the successive solutions aad bases, and vhere {& are constants

V= vie/vg = ~(ByP,)/(8,P,), (1$r) =m_

Dl" - 1’/}’!‘0 = 1/“&2‘}‘8'\

Relation (17.0)

is 4 consequence




of (12) and (16); it 1s easy to verify that the matrix whose rows
are defined by (121) satisfies the proper orthogonality properties
for the inverse when rultiplied on the right by the k + 1st basis

[?0, PJ p "Huj Ps’ P PJj]. As a conaequence of the iterative
1 m

prccedure we have eatablished two theorems,

Theorem VI: 1If solutions exist and their values have ]

finite upper bound, then 8 maximizing solution exists which is a

basic solution with the properties

m
(19) BVm ifoPJi.'Fi m M (P"o- Po, ‘\;1>0, 1-1’ coo.m)
UOPO - lp ﬁoPJi L o. ‘BOPJ :)_0 (J.ll 2' LILIC IS n)

Vo = SOM = Max Xq

where 3, 1s the 1% row or B!,

Theorem VII: 1f solutions exist and their values have

no finite upper bound, then a basis E and 8 vector P exist with

the properties

m
(20) BV = 1>.OPJ Vo= M (PJO- Pos V>0, 1ml, *, m)
=0 Y1

BoPy < O, 3P, < O

3 thi - (i3,p)0] + PE = M
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where the latter, with & > 0 arbitrary, forms a class of solutions

with unbounded values (pi is the 1 + 1% row of B'l).

Closely related to the methods of the next section, a

constructive proof will now be given to

Theorem VIII: If any solution exists, then & basic

solution exists.

For this purpose, adjust M so that the first non-zero

component of each row is positive and consider the augmented
system '

w0 B B D] [ P

(%, 20, §=1, ..., nm)

where xJ has one more component than i, and ‘- represents the

1
null vector. Noting ncithor-ié nor X .ms1 is required to be posi-.

tive, an obvious basic solution is ohtained using the variables

" 1
l?o' X, -5, xnm_._l]. It will be noted that the hyputhesi: of
the theorem permits construction of a solution for whioh i;+1 = 0
! e
(1=1,2,...,m). 1Indeed, for J < n set Xy = (xJ, 0) > 0. However,

! -
1t will be noted also that Xie4 = L+ 1] so that Max X4 = [ 1].
Accordingly. one may stert with the basic solution for the augmented ;
|} ]
system, keeping the vectora corresponding to xq and S always
!
in the basis use the simplex algorithm to Max XpHmel - Since at
]
the maximum ih+1 =0, (1 $ m+¥1). the corresponding vectors are not
in the basls any longer, see (5). By dropping the last component of
1
this Laslc solution and by dropping xn+m+1. one 18 left with a

basic solution to thc original system, (Q.E.D.).
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SECTION I1I
MINIMIZING A LINEAR FORM
The application of the generalized simplex method to the problem

of minimizing a linear form subject to linear inequality restraints

consists in bordering the matrix of coefficients and constant terms

of the given system by appropriate vectors. This can be done in
many ways — the one selected 1s one which identifies the inverse
of the basis as the additional couponents in a generalized matrix
problem so that computationally no additional labor is required
when the inverse is known.

The fundamental problem which we wish now to solve is to

find a set x = (xo, Xy *t xn) of real numbers satisfying the

equations
" |
. {2i) Xo + f GOJXJ = 0 |
!
> (b, > 0), (k =2, 3 ) |
xa X -b ) - LI I m !
1 k3™ k k < ’ ’ ’ ’ !
such that
(22) xJ)_O

where without loss of generallity one may assume bk 2 0. I¢ will be

noted that the subscript k = 1 has bcen omitted from (21). After
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some experimentation it has been found convcnicnt’ to ougment the
equations of (21) by a redundant equation formed by taking the

negative sum of equations k = 2, *+-, m, 1Thus

(2u) 5 ( 3 3 )
24 L8, X, =D a = - 3 a b, = -2 Db
1 13- 1 14 kaD kJ? 1 2 k

Consider the generalized problem of finding 8 set of vector

"variables" (in the sense of Section I) (Eb, il‘ see, in) and
auxiliary variables (xn+1, X 422 " xn+m) satisfying the matrix
equations
— n —
(25) Xy + f Bs%Xy = (o, 1,0, +++,0)
" n -s n
Xnek i, 8, 4%y = (b,,0,0,:++,1,:++,0)  (by< 05 by >0, kw2, ***,m)

where the constant vectors have . = m + 2 components with unity in

position k + 2, ;0 and in } 8re unrestricted as to aign and, for

o+
all other J,

\

(e6) X, ., 0 (J=1, *oo,n,n+2, *++, n+m) .

J

Adding equations k = 1, **+, m in (2%) and noting the definitions
of 8,4 8nd by given in (24)

*
Based on a recent suggestion of W. Orchard-liays.
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(27) ih+k - (0, 0, 1, ln""n 1)"

—=MB

There 18 a clcse relationship between the solutiono of (25)

and those of (21) when §h+1 2 0, for then the first components of

EJ for J = 0, +++, n satisfy (21). Indeed by (27), 1f 811 X0k 2 O,

the first component of all §h+k must vanish,but the 12% component

of the vector equations (25) reduces to (21) when the termu involving

;h+k are dropped. This proves the sufficiency of Theorem IX (below).

Theorem IX: A necessary and sufficient condition for a

solution to (21) to exist is a solution to (25) to exist with
*ns1 2 O

Theorem X: Maximizing solutions (or 8 class of solutions

with unbounded values) to (21) are obtained from the lBt components

of (Eb, SR ih) of the corresponding type solution to (25) with

Xn+1 2 O
To prove necessity in IX, assume (xo, v, xn) satisfies
(21): then
(28) ib = (xoo 10 on » 0)
fJ - (xJ, o, O, ve., 0) 1<Jgn
fn-&k-(o' o‘ oo-. 1‘ .eo‘ o):\-o l_\_ksm

(where unity occurs in position k + 2)satisfies (25). BRecause of the

possibility of forming solutions of the type (28) from solutions to




(21), 1t is easy to show that 18¢ components of maximizing solutions
to (25) must be m{ximizing solutions to (28) (Theorem Xx).

It will be noted that (25) satisfies the requirements for
the generalized timplex process: first the right-hand side con—
Sidered as u matrix is of form M = [Q, Ugs Ups *-+, U] where U,
is a unit column vector with unity in component k + 1 and is of

rank m + 1 (the number of equaticns); second, an, initial basic

Solution is avalilable. Indeed set Xgo Xpn41o Xosor *"% X, €Qual
to the corresponding constant vectors in (25) where iﬁ+k > 0 for

k =2, -+, mbecause b 2 0.

In applying the generalized simplex procedure, however,

both X, and X, 8re not restricted to be non-negative. Since

iﬁ+k 20for (k =2, ..., m), 1t follows that the values of the
solutions, ih+1, to (27) have the right—hand side of (27) 8a an
upper bound.

To obtain a maximizing solution to (25), the first phase

is to apply the generalized simplex procedure to maximige the
variable ;n+1 (with no restricticn on Xo). Yince §n‘1'haa a finite
upper bound, a bLasic solution will |e nroduced after a fini{te number
of chanres of tusle in which Yieq 2 U, providing Hax ;n*1 3 0, IEE

during the first phuse I“‘1 reaches omoxinum less than 7zero, then,

of course, by Theorem 1X there ts no solution to (21) and the process

terminates. If, in the iterative process, ;n+1 becomes positive (evan

though not maximum), the first phace, which is the seareh for 4 solution

to (21), is completed and the :econd phase, which is the search for
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an optimal solution, begins. Using the final basis of the first

phase in the second phase, Eb is maximized under the additional

restraint xn+1 2 0.

Since the basic set of variables «re taken in the initial

order (ib,

iﬁ+l' , ih+m) and in the first phase the variable

ih+1 is maximized, the second row of the inverse of the basis,

Bl. 18 used to "select" the candidate PB to introduce into the

basis in order to increase ih+1, see (14 ); hence s is determined

such that

! (29) BPg "= Mjn (blPJ) <0 .

However, in the second phase, oince the variable to be maximized

is ib and the order of the basic set of variables 1s (ib, iﬁ+l' cee),

then the first row of the inverse of the basls, Bo, 18 used; 1.e.,

one reverts back to (14 ). Application of the generalized simplex

procedure in the second phase yields, after a finite number of

changes in basls, either a solution with Max io or a class of

solutions of form (12) with no upper bound for X.. By Theorem X

0
the {irst components of Eb, ii, e X form the corresponding

solutions to the real variable problem.

The computational convenlence of thias setup 1s apparent.

In the first place (as noted earlier), the right-hand side of (21)

considered as a matrix 18 of form M = (@, Ugs Uys =+, Ué] where U
‘

13 a unit column vector with unlty in component k + 1.

i
In this case,

by (4), the basic solution V ~ p—} M = [b_lQ; 8_1] . This means
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(in this case) that of the L= m + 2 components of the vector V,

the last m + 1 components of the vector variables V, in the baaic

solution are identical with ”1' the corresponding row of the

inverae. In applications this fact is lmportant because the
last m + 1 components of Vi are artificial in the sense that
they belong to the perturbation and not to the original problem
and it 1s desirable to obtain them with as little effort as
possible. 1In the event that M has the apecial form above, no
additional computational effort is required when the inverse of
the basis is known. Moreover, the columns of (25) corresponding
to the (m+l) variables (ib, iﬁ+1, ree, ih+m) form the initial

identity basis (Uo, Ups» ***» Uy), 80 that the inverse of the '

initial basis is readily avallable as the ldentity matrix to
initiate the firat iteration.




(2]
' [';]
[4].

(9]

[10]

(11]

—

T
n

‘—‘

Gs]

[14]

FM-1264
N :"_52;
REPRRENCES ~20-

Activity Analysis of Production and Allocation, T. C. Koopmans,
EdTtor. John 5!10y and Sons, 1951,
(a) R. Dorfman, ”Apelication of Simplex Method to a Game

Theory Problem," Chapter XXII.
(b) @. Dantzig, "Maximizing of a Linear Funotion of Variadles

Subject to Linear Inequalities,” Chapter XXI.
(¢) 0. Dantzig, "Application of the Simplex Method to a

Transportation Problem," Chapter XXII.
(d) D. Oale, H. Kuhn, and A. Tucker, "Linear Programming and

the Theory of Games," Chapter XIX.

A. Charnes, "Optimality and Degeneracy in Linear Programming,* / | ,
Econometrica, April 1952, pages 160-70. /

A. Charnes, W. W. Cooper, and A. Henderson, "An Introduction / i

to Linear Programming," John Wiley and Sons, 19%3. /

A. Charnes and C. E. Lemke, "Computational Problems of Linesr

Programming," Proceeding of the Association of Computation ,
téburgh EQ5P“_____“THCJHT"""

Machiner_'x, P1t urgh, »e, pages 0.

Contritutions to Theo of Games. Kuhn and Tucker, Editors,
rinceton Unlversity Press: Vol. I, 1950: Vol. 1II. 1953,

G. Dantzig, Computational Algorithm of the Revised Simplex
Method, mo‘!ﬁnss,"?ﬁ‘mﬁwrrm‘. 22,

. Dantzig sand W. Orchard—Hayl‘ "The Product Form for the
Inverse in the Simplex Method.® RAND RN-126G, Doteber, 1953;
also RAND RM-1268, 19 Nevember 1953.

G Dantzig and A. Orden, "A Duality Theorem based on the
Simpiex Method," SEEEOlium on Linear Inequalities. USAP_Hq.,
SCOOP Publication No. , date prI1 1952, "pages, 5155,

A. Hoffman, M. Mannos, D. Sokolowsky, and N. Uiegm&nn.
"Computational Experience in Solving Linear Proiyﬂmu." Journal

of Soclal Industrial and Applied Msthematics, VoX. 1, N&. T
Septemler 1055, pages 17—55. == /

T. S Motzikin, "Two Consequences of the Transpgsition Theorem
of Linear Inequalities,” Econometrica, ¥ol1. 19, No. 2, April

! N

1951, pages 184-r, “/
T. 8. Motzkin, "Beiltrage zur Theorle der Lipsaren Ungleichungen,"
Dissertation: Basel, 1633; Jerusalem, 1935, | b

J. von Neumann, "Discussion of a Maximization ProbLlem,"
Institute for Advanced Study, 1947 Manuscript,

Alex Orden, "Solu&ign of Systems of Linear Imegualities on a
Digital Computer, roceedings of tle Association of Computin
Machinery, Pittsburgh’, Igﬂ?.‘ﬁiﬁ?ﬁ S o1 oy Es b g

A J. Hoffman, "Cycling in the Simpﬂex Algorithm," National
Bureau of Standards Report. No. 2974, December lé. on3 T




